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Abstract
Purpose of Review Skeletal muscle and bone are connected anatomically and physiologically, and play a crucial role in human
locomotion and metabolism. Historically, the coupling between muscle and bone has been viewed in light of
mechanotransduction, which dictates that the mechanical forces applied to muscle are transmitted to the skeleton to initiate bone
formation. However, these organs also communicate through the endocrine system, orchestrated by a family of cytokines namely
myokines (derived from myocytes) and osteokines (derived from bone cells). A third player in this biochemical crosstalk is
adipose tissue and the secretion of adipokines (derived from adipocytes). In this review, we discuss the bidirectional effects of
myokines and osteokines on muscle and bone metabolism, and the impact of adipokines on both of these secretory organs.
Recent Findings Several myokines, notably, IL6, irisin, IGF-1, BDNF, myostatin, and FGF2 exert anabolic/catabolic effects on
bone, while the osteokines osteocalcin and sclerostin have shown to induce muscle anabolism and catabolism, respectively.
Adipokines, such as leptin, resistin, adiponectin, and TNFα (released from adipose tissue), can also modulate muscle and bone
metabolism. Contrarily, exercise-mediated release of lipolytic myokines (IL6, irisin, and LIF) stimulates thermogenesis by
promoting the browning of adipocytes.
Summary Myokines, osteokines, and adipokines exert autocrine/paracrine effects locally as well as through the endocrine
system, to regulate muscle, bone, and fat metabolism. Reductions in physical activity and increases in energy intake, both linked
with aging, leads to adipocyte hypertrophy and the recruitment of immunological cells (macrophages). In turn, this releases pro-
inflammatory adipokines which induces chronic low-grade inflammation (LGI), a key player in the pathology of several diseases.
However, exercise-induced stimulation of bioactive cytokines, through muscle-bone-fat crosstalk, increases muscle anabolism,
bone formation, mitochondrial biogenesis, glucose utilization, and fatty acid oxidation, and attenuates chronic LGI.
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Introduction

The musculoskeletal system, comprising primarily of muscle
and bone, encompasses a significant portion of whole-body
mass (~ 55% of a healthy adult) and plays a fundamental role
in human movement and metabolic health. Aside from the bio-
mechanical role of bone (in supporting the skeleton) [1] and
muscle (enabling locomotion through contractile proteins (sar-
comeres)) [2], both tissues also regulate whole-body metabo-
lism via the utilization, distribution, and delivery of nutrients
and other substrates [3, 4]. For instance, bone provides the
largest storage site for calcium/phosphate, production of mes-
enchymal stem cells (MSC), and hematopoiesis [1], while mus-
cle is the largest depot for glucose disposal, storage of amino
acids, and is a major contributor to basal metabolic rate [3].
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The maintenance of muscle and bone homeostasis is de-
pendent on endogenous (hormonal, inflammatory) and exog-
enous (physical loading, nutrition) factors [5], which act in
synergy to regulate its structure and function [6]. Bone turn-
over is modulated by the coupling of bone formation and
resorption, with the former mediated by MSC-derived osteo-
blasts which deposit new extracellular matrix in response to
biochemical stimuli, and the latter facilitated by monocyte-
derived osteoclasts which remove poor-quality bone generat-
ed by states of inactivity, disuse, or trauma/injury [6]. On the
other hand, muscle protein metabolism is governed by the net
balance between protein synthesis and degradation (i.e., if
degradation exceeds synthesis catabolism occurs and vice
versa) [7]. In the presence of anabolic stimuli (i.e., physical
loading and/or protein-derived amino acids), myogenesis oc-
curs allowing the proliferation and differentiation of myo-
blasts into myotubes/myofibers [7]. Both tissues hold great
plasticity; in healthy adults, muscle protein turnover occurs
at ~ 1–2% per day [7] while bone turnover occurs at an atten-
uated rate (cortical bone ~ 5% per year, trabecular bone ~ 25%
per year) [8]. Beginning between the 4 and 5th decades of life,
the structure and function of muscle and bone slowly decline
(bone density (~ 1–1.5% per year); muscle mass (~ 1.5–2%
per year); muscle strength (~ 2.5–3% per year) [9, 10]), and
by age 80, this may translate into a significant loss of muscle
mass (~ 30%) [10], strength (~ 50%) [11], and bone density
(30–50%) [8].

Hormonal factors particularly estrogen, testosterone (in
men), parathyroid hormone (PTH), leptin, growth hormone,
and its constituent insulin-like growth factor-1 (IGF-1) [12]
play a role in the accretion of muscle and bone in early life,
maintenance inmidlife, and the preservation of these tissues in
late life [13]. Nutritional factors, notably dietary protein, vita-
min D and calcium modulate bone metabolism [14, 15], and
protein (and possibly vitamin D), activate anabolic signaling
(i.e., IGF-1, mTOR pathways) and downregulation of catabol-
ic systems (i.e., ubiquitin proteasome pathway) [16–18].
Epidemiological data support these findings by demonstrating
that a higher dietary intake of protein correlates with bone
density [19], and both protein and vitamin D are associated
with higher lean mass, strength, and function [16, 20–23].
Finally, genome-wide associations demonstrate that genetic
factors are predictive of peak bone density and lean bodymass
[24], and single-nucleotide polymorphisms in the genes regu-
lating myostatin and the vitamin D receptor have been asso-
ciated with muscle and bone loss [25].

Overall, aging induces changes in serum levels and cellular
response to most of these factors. In addition, factors secreted
by other tissues—such as fat—start playing an important role
as inducers of tissue degeneration. Herein, we discuss the
directional effects of myokines on bone metabolism and
osteokines on muscle metabolism, and the impact of
adipokines on both of these secretory organs. We also

highlight the role of cytokines in the manifestation of various
age- and metabolically related diseases, and highlight how
exercise can combat chronic low-grade inflammation associ-
ated with these pathological states.

Effects of Aging, Physical Inactivity, Obesity,
and Inflammation

As muscle and bone metabolism are tightly regulated, any
imbalance between bone-forming osteoblasts/bone-resorbing
osteoclasts and muscle protein synthesis/degradation, as ob-
served with physical inactivity (aging/daily step reductions) or
de-loading (prolonged bed rest/spaceflight) [13] results in the
loss of bone strength and microarchitecture and muscle mass
and function, and increases the risk of osteopenia/osteoporo-
sis, sarcopenia, and/or osteosarcopenia [26]. All three condi-
tions are strong risk factors for falls, fractures, and adverse
outcomes in older persons [27]. Muscle loss has metabolic
consequences too, just 2 weeks of step reduction induces a
marked decline in muscle protein synthesis rates which, in
turn, increases insulin resistance and transitions older men
from a pre-diabetic to a diabetes state [28]. In bone too, de-
clines in microarchitecture are linked to stem cell exhaustion
[29]. To exacerbate this process, a chronic energy surplus (i.e.,
increases in food intake and/or reductions in physical activity)
common in aging increases adiposity and deposition of lipids
within bone marrow and myofibers, releasing free fatty acids
which are lipotoxic [30, 31] to osteocytes, osteoblasts, and
myocytes in the vicinity [32]. In a vicious cycle, systemic
low-grade inflammation (LGI) ensues [33] and results in a
host of metabolic consequences.

Biomechanical and Biochemical Interactions

Muscle and bone interact to maintain their structure and func-
tion [12]. Studies demonstrate the load applied to skeletal
muscle (SKM) in response to resistance exercise is transferred
to bone, which not only initiates muscle protein synthesis but
also signals a high-energy demand to facilitate bone forma-
tion, providing evidence of a biomechanical interaction [6].
Systemic factors such as growth hormone (GH), insulin-like
growth factor-1 (IGF-1), and leptin can also initiate muscle
hypertrophy and bone formation [12], demonstrating that
these tissues are also able to receive endocrine signals.
Indeed, it is now recognized that muscle and bone can receive,
as well as secrete, biochemical signals in a bidirectional man-
ner, thus affecting the metabolism of both tissues as well as the
whole body [4, 6, 34, 35]. These signals are orchestrated by a
panel of cytokines and growth-like factors, namely myokines
secreted from myocytes and osteokines from osteocytes, both
of which can exert autocrine, paracrine, and endocrine effects.
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In addition, adipose tissue (AT)-derived adipokines (secreted
by adipocytes) interact in concert with myokines and
osteokines to regulate muscle and bone metabolism.

Myokines and Bone Metabolism

Myokines that influence bone metabolism include some inter-
leukins (ILs) and myostatin; however, burgeoning evidence
has implicated several other factors capable of influencing
bone metabolism. The interleukin (IL) families of cytokines
are pro-inflammatory mediators and are secreted from a vari-
ety of cell types across the body. Several ILs are secreted by
SKM, with wide ranging and occasionally contrary effects.
One of the most significant of these is IL6, though IL7 and
IL15 have also been observed in muscle. Most IL6 is synthe-
sized by the liver, and is strongly pro-inflammatory; however,
exercise has been shown to stimulate a large amount of
muscle-derived IL6 [36••], which in fact acts as an anti-
inflammatory compound and increases glucose uptake and
sensitivity [37, 38]. Despite these beneficial effects, the im-
pacts of IL6 on bone are less positive. Systemic inflammation
or estrogen deficiency and IL6 drive osteoclastogenesis by
inducing the release of receptor activator of nuclear factor
kappa-Β (RANK) by osteoblasts, osteocytes, and leukocytes
and increase expression of its ligand (RANKL) by osteoclasts
leading to a net resorptive effect [39]. Muscle-derived IL6 has
been shown to drive a resorptive state in bone via osteoblast
signaling in co-culture experiments of IL6 receptor (IL6R)-
deficient cells. When IL6 is added to cultures of osteoblasts
and osteoclast progenitors, there is an increase in bone-
resorbing cells. However, when osteoblasts in culture lack
the IL6R, the addition of IL6 does not have this effect. IL7
and IL8 are also strongly related to inflammatory responses
and have been shown to be expressed in muscle. IL7 is a
mediator of the acquired immune system [40], and IL15 is a
potent proliferator of innate immune cells [41]. Both have a
strong action on bone resorption, increasing osteoclastogene-
sis largely via RANKL stimulation, leading to catabolism.

Myostatin is a member of the transforming growth factorβ
(TGFβ) family of cytokines, and is a negative regulator of
muscle mass. Increased levels of myostatin correlate with
states of muscle disuse, injury, and sarcopenia [42]. In a sim-
ilar theme, myostatin negatively impacts bone remodelling,
driving a catabolic, resorptive state, with increased osteoclas-
togenesis, and limiting bone formation [43•]. Strengthening
this association, treatment with follistatin, an inhibitor of
TGFβ cytokines, leads to improved bone regeneration in an-
imal models of type 2 diabetes mellitus (T2DM) [44], and
suppression of the myostatin signalling pathway may under-
pin the pro-osteogenic effects of pulsed ultrasound therapy for
fracture healing [45]. While myostatin has a clear effect on
bone remodelling, the underlying mechanism remains

unclear. Research has indicated a role for osteocyte signalling
and exosome production as a potential underlying mechanism
for the effects of myostatin in bone [6]. Myostatin was shown
to suppress the expression of miRNA-218 in osteocyte-
derived exosomes, as well as increased production of the
anti-anabolic factors sclerostin (Sost), RANKL, and
Dickkopf Wnt signalling pathway inhibitor 1 (DKK1).
miRNA-218 is a Wnt signalling inhibitor, and as osteocyte-
derived exosomes undergo rapid uptake by local osteoblasts,
this leads to a decrease in osteoblastogenesis and bone forma-
tion [43•].

While myostatin has been the most extensively studied
myokine regarding its deleterious impact on bone remodel-
ling, there are a number of myokine growth factors that have
been shown to have an anabolic effect on bone. SKM ex-
presses a number of growth factors, including IGF-1 and the
fibroblast growth factors 2 (FGF2) and 21 (FGF21). IGF-1 is
predominantly synthesized by the liver and has well-
documented anabolic effects in almost all body tissues. It is
also expressed by SKM, particularly after exercise [46]. IGF-1
is well known to be a strong mediator of bone anabolism
through increased osteoblast survival and proliferation [47].
FGF2 has a similar effect on bone as IGF1, though its secre-
tion has been suggested to be a function of disruption to mus-
cle plasma membranes either from exercise or injury, rather
than exocytosis [46], though newer evidence has identified a
non-typical method for the release of FGF2 [48]. Irrespective
of its secretion, FGF2 causes similar effects in osteoblasts to
IGF1 with increased proliferation, and accelerated bone for-
mation [46]. More recently, however, FGF2 has been shown
to mitigate the resorptive effects of glucocorticoids on bone,
through inhibition of Sost signalling [49], providing evidence
of another putative pathway for its anabolic effects. FGF21
was first documented as a mediator of glucose uptake in a
range of tissues including the liver, AT, and SKM. In muscle,
it is expressed in response to insulin, and causes increased
uptake of glucose, and in bone, it has been purported to lead
to bone resorption. Loss of function mutations of the FGF21
gene in mice leads to the development of a high bone mass
phenotype, mediated by the peroxisome proliferator-activated
receptor γ (PPARγ). Additionally, increased expression of
the FGF21 gene leads to osteoporosis, further suggesting a
role in bone homeostasis [50]. Recently, however, the
in vivo importance of this effect has been disputed, with ad-
ministration of exogenous FGF21 causing no change in bone
formation or resorption in mice, leaving little clarity as to its
physiological role [51].

Another agent gathering interest due to its role in AT, mus-
cle, and bone is the adipomyokine irisin. Irisin is one of the
more newly discovered hormones and is a fragment resulting
from the proteolytic cleavage of fibronectin type III domain 5
(FNDC5), which is secreted by both muscle and fat tissue
[52]. Irisin has been shown to have effects across multiple
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body systems, including increasing insulin sensitivity and
glucose uptake in the liver, muscle, and AT. It was initially
shown that low circulating levels of irisin were correlated with
decreased bone mass in people with T2DM [53] and
osteoporotic fractures [54]. More recently, it has also been
shown to have an anabolic effect on bone, improving
osteoblastogenesis [55] and improving bone mass [56, 57] in
animal models when administered exogenously. Despite this
positive evidence for an impact in bothmetabolic function and
bonemass, there is as yet, no clear mechanism for the action of
irisin in vivo, though it has been suggested that the
improvement in osteogenesis is due to stimulation of MAP
kinase signalling pathways [58]. It has been demonstrated
by a number of laboratories that it increases after exercise
[59–61], and plays a role in the insulin-mediated glucose re-
sponse; however, other studies have contradicted this finding
[62].

Osteokines and Muscle Metabolism

Recently, a small number of factors secreted by bone have
been identified as having effects systemically, on a range of
tissues, including muscle. While several candidates have been
suggested, osteocalcin (OCN) and Sost have exclusively
shown to have an endocrine impact on SKM.

OCN is a hormone secreted principally by osteoblasts and
i s p r e s en t i n t h e c i r cu l a t i on in ca rboxy l a t ed ,
undercarboxylated, and uncarboxylated forms. Since it was
shown that the un- or undercarboxylated forms (ucOCN) in-
creased insulin sensitivity and secretion through direct effects
on the pancreas [63•], it has been the center of most research.
Multiple clinical studies have shown that ucOCN increases
after exercise [64–66], and this has been associated with a
number of metabolic effects with the overall effect of increas-
ing insulin secretion and sensitivity, and in glucose uptake.
While direct binding has never been observed, both knock
out models [67, 68] and computational modelling [69] have
suggested the GPRC6A as the putative receptor for ucOCN.
In muscle, ucOCN causes an insulin-dependent increase in
glucose uptake post-contraction in animal models [70, 71],
with an associated increase in GPRC6A [72]. From a more
functional perspective, ucOCN has also been implicated in
muscle hypertrophy and strength. Mice with OCN deletions
have lower muscle mass [67, 73], and administration of
ucOCN increased muscle mass in older mice [74]. Recent
evidence has uncovered a novel mechanism of bone-muscle
crosstalk surrounding OCN and IL6 signaling. After observa-
tion of significant increases in both muscle-derived IL6 and
ucOCN post-endurance exercise, it was found that these
changes are dependent on one another [36••]. IL6-deficient
mice did not show the typical increase in OCN post-exercise,
indicating that the chemokine was required for this crosstalk.

This effect was corrected via application of injected IL6, pro-
viding strong evidence for the underlying mechanisms. As
discussed above, it was shown that the bone effects of IL6
occur through osteoblast signaling, with a resultant increase
in RANKL expression and osteoclastogenesis, and it appears
that muscle performance benefits of IL6 are mediated through
the skeleton [36••]. While IL6-deficient mice have been re-
peatedly shown to have compromised muscle response to ex-
ercise, mice lacking the IL6R in myofibers did not suffer from
the deficit. Instead, mice lacking IL6R in osteoblasts mim-
icked the effect of total IL6 deficiency, indicating that OCN
was a mediator of the muscle response to the chemokine [36].
Finally, this mechanism was shown to underpin the effects of
OCN on muscle, by increasing the uptake and metabolism of
glucose.

Despite these promising animal models, human trials are
lacking and are less conclusive. Cross-sectional studies have
shown that resistance training causes an increase in ucOCN,
alongside a decrease in HbA1c, insulin resistance, and blood
glucose [75] as well as quadricep strength [76]. This exercise-
mediated increase in OCN has also been shown to rely on IL6
secretion from muscle [36••]. Use of the IL6 antibody drug
tocilizumab caused an almost complete erasure of the
exercise-induced OCN increase after a 12-week endurance
training regimen [36••], indicating that the relationships found
in animal studies also translate to human. Despite these asso-
ciations, no interventional trials have provided causative evi-
dence in vivo for the effects of ucOCN on muscle metabolism
or function.

While ucOCN is the most extensively studied osteokine, a
small body of recent evidence has investigated other bone-
derived factors for their role in muscle function. Studies have
investigated the secretome of the osteocyte, showing that it
inhibits SKM cell differentiation, although no specific agent
has been identified [77]. This has prompted investigation into
osteocyte-secreted factors, including the anti-anabolic Sost
which acts to inhibit osteoblastogenesis. This action occurs
through the inhibition of Wnt signalling upon binding with
the receptors LRP5 and LRP6, thus limiting osteogenesis.
Identification of LRP5/6 in muscle cells [78] led to investiga-
tion into whether Sost had effects in muscle. Some in vitro and
ex vivo evidence suggests that osteocytes in culture can stim-
ulate myogenesis and contractile function [79], suggesting a
contrary anabolic response when compared with its role in
bone. However, a recent cross-sectional study found the op-
posite, with serum Sost levels negatively correlating with
SKM mass in older Koreans with sarcopenia [80••], implying
a similar anti-anabolic effect as seen in bone. To further com-
plicate the picture, an animal model has shown that treatment
with anti-Sost antibody therapy (commonly used in osteopo-
rosis treatment) did not stop, or slow the atrophy associated
with spinal cord injury, as would be expected were Sost a
strong inhibitor of muscle hypertrophy [81].
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Adipokines Impact on Muscle and Bone
Metabolism

Adipokines are AT-derived cytokines and hormone-like fac-
tors regulating the metabolic response throughout autocrine,
paracrine, and endocrine signalling [82]. Typically, visceral
AT accumulation (i.e., positive energy balance) is associated
with adipocyte hypertrophy that recruit infiltrating immune
cells [83]. The resulting release of adipokines leads to the
development of systemic low-grade inflammation (LGI) [84]
that can induce dysmetabolic conditions (e.g., insulin resis-
tance) [59, 85]. Contrarily, enhanced energy consumption as-
sociatedwith fat mobilization fromAT (e.g., exercise), togeth-
er with the effect of SKM-derived lipolytic myokines (IL6,
irisin, LIF), stimulates thermogenesis and, by reducing LGI,
improves whole-body metabolism [37].

Besides their involvement in the pathogenesis of metabolic
diseases, adipokines modulate bone turnover and bone miner-
al density (BMD) (e.g., enhanced bone marrow adiposity in
osteoporosis associates with accelerated bone resorption) as
well as SKM catabolism in aging (e.g., sarcopenia) [6].

In LGI, as in obesity, leptin upregulates IL6 and TNFα and
altogether downregulate adiponectin; hyperleptinemia causes
leptin resistance that limits muscle fatty acid (FA) oxidation
and reduced lipolysis in AT [86] an effect that is effectively
counteracted by exercise [84]. Adiponectin expression is in-
versely associated with AT mass; it has an anti-inflammatory
effect, increases FA oxidation and glucose uptake in SKM,
and inhibits hepatic gluconeogenesis. It is also expressed by
SKM [87], although it is not affected by acute exercise but it is
upregulated in SKM of severely obese subjects in response to
endurance training, as are adiponectin receptors (AdipoR1
and R2) [88]. IL6, C-reactive protein, leptin, resistin, and
visfatin/NAMP that features, among the other adipokines, in-
creased adiposity and LGI inversely associates with BMD
[89, 90] and this phenotype can be reverted by exercise train-
ing [37, 91–94] (Fig. 1).

Age-associated muscle wasting and sarcopenia associate
with SKM disuse and catabolism, endocrine alterations,
chronic inflammation, nutritional deficiencies, and insulin re-
sistance [95]. In sarcopenic older person, LGI and increased
plasma levels of IL6, TNFα, and CRP [96] associate with loss
in muscle strength [97]. For instance, chronically elevated IL6
activates the JAK/STAT3 pathway that leads to SKM atrophy
[98] and in turn induces IL6 resistance, a condition that share
similar patterns with insulin or leptin resistance in diseases
[99].

In a vicious cycle, the metabolic and inflammatory effects
of obesity can be exacerbated by the presence of sarcopenia, in
a condition called sarcopenic obesity [59]. Also, bone loss
(osteopenia/osteoporosis) is often associated with sarcopenia
since they share common risk factors and molecular mecha-
nisms; their combination has been termed osteosarcopenia

[26]. Diabetes and obesity, associated with an unhealthy inac-
tive lifestyle, together with aging thyroid dysfunctions, GH/
IGF-1 alteration, and malnutrition, are main risk factors for
osteosarcopenia since they alter the metabolic balance toward
catabolism [100]. Often, increased adiposity and LGI reflects
into fat infiltration of SKM and bone; the established local
inflammation sustains the systemic inflammation. Moreover,
the pro-inflammatory phenotype expressed by these tissues
feeds the catabolism and results in an aberrant crosstalk that
exacerbates the progression of the disease [100, 101].

Inducing Changes in Tissue-Specific Factors
and Their Effects on Muscle, Bone, and Fat

Exercise profoundly affects all tissues and organs: the more
intense and greater volume is the activity, the greater is the
response. Different kinds of exercise (e.g., endurance vs. re-
sistance, aerobic vs. anaerobic, continuous vs. intermittent)
differently affect the homeostasis and, hence, the adaptive
response [102]. Adaptation to exercise contemplates the inte-
gration of primary (direct response) and secondary (response
to soluble factors released by a third tissue) mechanical, en-
docrine, metabolic, and inflammatory responses each one
proper of a different tissue. Then, these responses differ be-
tween acute and chronic exercise (training), since long-term
adaptation implies changes in cell functions [103]. From a
therapeutic point of view, the current most effective and easily
applicable strategy to treat sarcopenia and osteosarcopenia is
to intervene on lifestyle, e.g., exercise and nutrition. Regular
exercising limits chronic LGI by reducing the basal inflamma-
tory status and, also, the acute inflammatory response arising
from a flogistic stimulus [104] (Fig. 2).

The primary bone response to acute exercise depends upon
the mechanical stimulation and is mainly mediated by osteo-
cytes. These specialized osteoblasts, buried into the complex
canalicular system within bone matrix, sense the exercise-
driven changes in the canalicular environment (e.g., fluid
shear stress, electrolyte concentration, shape modification)
and inhibit the constitutive secretion of Sost. Mechanical stim-
ulation of bone (i.e., loading) eliminates the Sost inhibition
and allows the activation of osteoblasts. Exercise-induced os-
teocyte-derived prostaglandin E2 (PGE2) exerts similar ef-
fects by stimulating the transcriptional activity of β-catenin,
a downstream factor in Wnt signalling [103] However, as
actual exercise “consumes” calcium, bone is resorbed regard-
less the loading level of the activity [105]. The release of
osteokines from both the direct stimulation of osteocytes/
osteoblasts and the resorption-dependent release/cleavage of
matrix-buried factors generates a secondary response in bone
itself and other tissues by acting autocrinally, paracrinally, and
endocrinally. On the contrary, the response to chronic exercise
is mainly dependent upon the loading level with weight-
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bearing and high impact activities (running, jumping, resis-
tance) generating an anabolic response and loading-free activ-
ities (cycling, swimming) associated with a more prominent
catabolic response of the bone [103, 106].

The loading-induced Sost inhibition and the consequent
activation of Wnt signalling, for instance, increases the MSC
pool, induces osteogenesis, and inhibits adipogenesis [107].
Serum Sost positively associates with age and body mass in-
dex (BMI) and negatively with bone formation marker levels
and physically active status [108]; indeed, Sost has emerged
as a regulator of glucose and fat metabolism [109, 110].

In unloading conditions (e.g., bed rest, immobility, not
weight-bearing training), osteocytes also express FGF23, a
phosphatonin that increases the release of phosphorous in

urine (by inhibiting its reabsorption in the kidney tubule), in
order to maintain the blood concentrations of phosphorous
that are increased as a consequence of increased bone resorp-
tion. FGF23 inhibits the activation of vitamin D in the kidney
and decreases PTH secretion, with the aim to keep the
calcium-phosphate homeostasis [103]. FGF23 is also
expressed by the trained SKM, at least in mice, where it
may limit the exercise-associated production of radicals [111].

Bone morphogenetic protein (BMP)7, osteocalcin, and
lipocalin (LCN)2 are expressed by active osteoblasts but can
be released from the matrix during bone resorption (BMP7,
ucOC). They act as osteokines with prominent effects on en-
ergy metabolism [4, 38]. BMP7 is involved in browning of
AT [112] and enhanced thermogenesis other than stimulating

Fig. 1 The biological role of
myokines, osteokines, and
adipokines in muscle, bone, and
fat crosstalk. Interleukin, IL;
insulin-like growth factor-1, IGF-
1; fibroblast growth factor, FGF;
leukemia inhibitory factor, LIF;
tumor necrosis factor, TNF;
osteocalcin, OCN; sclerostin,
SOST

Fig. 2 Physical inactivity and/or a
positive energy balance, both as-
sociated with aging, lead to adi-
pocyte hypertrophy and the re-
cruitment of immunological cells
(macrophages). This releases pro-
inflammatory cytokines from ad-
ipose tissue and causes chronic
low-grade inflammation (LGI),
which plays a pathological role in
various age- and metabolically
related diseases. However,
exercise-induced contraction of
sarcomeres releases anti-
inflammatory myokines that
combat chronic LGI
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insulin secretion by pancreatic insulae [113, 114]. In mice,
ucOC (but not carboxylated OC [cOC]) improves insulin sen-
sitivity, and metabolic status in high-fat diet models [115],
glucose uptake and IL6 sensitivity in SKM [116•], and possi-
bly infertility [117, 118] in mice. However, the relative effects
of cOC and ucOC are definitely unclear in humans: vitamin K
treatment increases cOC and decreases ucOC but associates
with an improved metabolic status; total OC, and not ucOC,
associates with the metabolic profile in osteoporotic women;
weight-bearing (cOC enhancing) and not weight-bearing
(ucOC enhancing) training activities associate with an im-
proved metabolic status, although with bone anabolism the
former and bone catabolism the latter [4].

LCN2, first recognized as adipokine, is expressed by oste-
oblasts and regulates feeding contributing to postprandial sa-
tiety and stimulates energy expenditure [119••]; obese sub-
jects can develop LCN2 resistance [120]. Like sclerostin,
LCN2 responds to mechanical stimulation and is
overexpressed under unloading (e.g., bed rest, microgravity)
but not in unloading-independent bone loss conditions (e.g.,
ovariectomy). LCN2 serum levels increases with aging and
are reduced by energy expenditure [121].

SKM is the effector of exercise and throughout a voluntary
contraction driven by central nervous system signals.
Movement of sarcomeres and sarcomere-associated structures
also results in the generation of biochemical signals
(myokines) that are released by the SKM and act
autocrinally/paracrinally on the myofibers and endocrinally
on other tissues. Moreover, SKM activity is secondarily reg-
ulated by biochemical signals released by other tissues (e.g.,
bone, AT) in response to exercise themselves [37, 122]. Most
of these muscle-derived biochemical signals are shared with
AT-generated signals, but the net result of their action mainly
depends upon the different kinetics of release. A main exam-
ple is given by IL6: chronically, even slightly elevated, AT-
derived IL6 has pro-inflammatory effects (LGI) while pulsa-
tile, even very high in amplitude, levels of SK-derived IL6
(i.e., during exercise) have anti-inflammatory effects. While
AT-derived IL6 associates with glucose intolerance [37] and
stimulates bone resorption by inducing RANKL and PGE2
expression [123, 124], SKM-derived IL6 increases glucose
and FA uptake in SKM cells and improves the metabolic
status and bone metabolism due to an inhibitory effect on
LGI-associated IL6 [37, 122].

LIF (leukemia inhibitory factor), a myokine belonging to
the IL6 superfamily, stimulates the post-injury satellite cell
(SC) proliferation for muscle regeneration (e.g., exercise-
induced muscle damage, EIMD) and SKM hypertrophy
[125]. It is induced by acute exercise (aerobic and resistance)
[126] and, in bone, stimulates turnover, osteoblast prolifera-
tion in periosteal pre-osteoblast while it inhibits osteoblastic
functions in mature cells. It is also responsible for enhanced
PG-induced bone resorption [127]. IL7 is also involved in

SKM regeneration by stimulating the migration of SCs
[128], and although as for IL6, T cell-derived IL7 has pro-
osteoclastogenic effects in bone (it is a mediator of
ovariectomy-induced osteoporosis) [129], when expressed in
a pulsatile fashion by exercising SKM stimulate turnover [37].

IL15 is a myokine involved in the first phase of adaptation
to exercise [130] and it powerfully induces TNFα and
RANKL expression in osteoblasts and stromal cells, thus
stimulating osteoclastogenesis [131]. These acute exercise-
dependent SKM-generated signals, hence, seem to have pro-
regenerating and pro-anabolic effects on SKM itself while, on
bone, they stimulate turnover and, hence, the release of calci-
um, useful for muscular contraction and neuromuscular func-
tion, and osteokines for regulation of the energy substrate
management.

On a chronic point of view, instead, SKM disuse, atrophy,
sarcopenia, and aging are associated with myostatin expres-
sion [34, 132] which also enhances osteoclastogenesis [133].
Follistatin (FST) and its related factors (FSTL1, FSTL3,
decorin), inhibitors of myostatin, are induced by acute endur-
ance exercise [134] and chronic combined strength and endur-
ance training [135]. The phenotypes from their mutation evi-
denced their importance in bone and muscle development.
Fstl3−/− mice undergo frequent fractures and loss of osteocyte
mechanosensitivity (i.e., loss of loading-dependent bone gain
and Sost inhibition) [34].

Brain-derived neurotrophic factor (BDNF) is induced by
acute and chronic endurance and moderate-to-high intensity,
regardless the gender [136–142]. BDNF acts, throughout its
receptor (TrkB), on metabolically active osteoblast and by
hypertrophic chondrocytes of the growth plate during
intramembranous ossification, and in osteoblasts and endothe-
lial cells in fracture healing site [143].

MCP-1 expression in SKM is strongly induced by acute
and chronic resistance and endurance exercise, in an intensity-
dependent manner, regardless the metabolic and training sta-
tuses [144–146]. MCP-1 (also known as CCL2) is the primary
ligand for the CCR2 receptor, which is expressed by
monocyte/macrophages and, as such, it is a key regulator of
osteoclastogenesis and has a pivotal role in inflammation and
tumor-induced osteolysis [147]. Besides its expression in AT,
it promptly responds to acute exercise regardless the type of
activity, while it is not affected by chronic exercise [146].

AT responds to exercise mainly secondarily to the in-
creased energy needs, signaled by the SKM first but also by
liver, brain, and bone. This response consists in the release of
energy substrates (FA and glycerol) and, as reported above,
adipokines that may hesitate, on log-term basis, into reduced
adiposity and improved inflammatory (LGI) status. In general
terms, while acute exercise may stimulate adipokine release,
training causes a decrease in their expression and secretion,
thus limiting the basal flogistic level, as discussed above. Only
adiponectin, whose anti-inflammatory properties have been
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already discussed, increases during exercise training. The ex-
ercise training-associated pro-inflammatory-to-anti-
inflammatory shift limits the catabolic potential while increas-
ing the anabolic one. The net result is an improved status of
bone and SKM [4, 6].

Closing Remarks and Future Directions

The recent rediscovery of SKM, AT, and bone as endocrine
organs has revolutionized several concepts in biomedicine by
widening the concept of integration. As described above,
without the claim to be exhaustive, the structure and function
of these tissues strikingly depends on the metabolic function
of others. However, this is just a part of the story since this
first, although multilevel, integration is, in turn, integrated
within the whole-body system, thus pushing the complexity
of the interactions. The evidence comes from several metabol-
ic diseases: as the phenotype of a metabolic disease mainly
expresses toward the modification of the functions/
metabolism of one or two organs, it secondarily affects the
others. For instance, in T2DM, the primary metabolic dys-
function of AT and SKM associates with the increased frac-
ture risk; in osteoporosis, the increased fracture risk often as-
sociates with metabolic dysfunctions, sarcopenia, and obesity.
It emerges that by therapeutically acting on one of these or-
gans (e.g., to treat a metabolic dysfunction), one can get re-
sults on the others; better, by acting on all these organs, the net
result may be even potentiated [103]. This is the case of exer-
cise interventions, currently considered a “polypill” to treat
multimorbidities and to improve health status given its favor-
able pleiotropic effects on all organs and systems [148].
Thanks to this endocrine-based view, the exercise biology
studies, prior neglected and mostly relegated as “recreational
science”, have gained relevance as conventional and effective
interventions. Future researches must invariably base on this
integrative view in order to effectively explain the biological
mechanisms underlying the physiological and pathophysio-
logical interactions among muscle, bone, and adipose tissue.
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